64(t)=-16t^2+48+0

Simple and best practice solution for 64(t)=-16t^2+48+0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64(t)=-16t^2+48+0 equation:



64(t)=-16t^2+48+0
We move all terms to the left:
64(t)-(-16t^2+48+0)=0
We get rid of parentheses
16t^2+64t-48-0=0
We add all the numbers together, and all the variables
16t^2+64t-48=0
a = 16; b = 64; c = -48;
Δ = b2-4ac
Δ = 642-4·16·(-48)
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{7}}{2*16}=\frac{-64-32\sqrt{7}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{7}}{2*16}=\frac{-64+32\sqrt{7}}{32} $

See similar equations:

| 13-m-m=m-8 | | 11+5x=1+3x | | 17-2x=12-(6x+13) | | 8-5m=-4-8m | | -8x+8x=12-2x | | 4(4x+4)+73=18x+11-2x+78 | | 15x-120=6x-x+2(-x+3) | | 2(x-3)-6x=22 | | 28/5=n/25 | | 5x+4=-106 | | (4b-8)/3=2b | | 14b=-567 | | 7x+21x-9=7(4x+7) | | -3x+2(4x+14)=58 | | (9x-5)^2=3x+5 | | 210x3/7= | | -6-4x=-7x-6 | | 10x-9=-2x=69 | | 6=(7/2)x | | |x+10|=|2x-7| | | 7x+5x-3=3(4x+2) | | 2.45−3.1t=21.05 | | 62+x=x=180 | | -28=-14d | | x-(2x+1)=8(3x+x) | | 4d+10=3 | | 11.3−7.2f=−3.82 | | 3x+13x-8=4 | | 4(x+1)÷6=2x-3 | | -2(7-y)+4=-14 | | 3(1.185)^x=4 | | 16(9c-1)-8=142c+16 |

Equations solver categories